
SBList v2.0 KnowledgeBase

SBList offers many features which are not supported by standard list boxes. Below is a list of
topics which should help you to discover what you can do with an SBList. Sample code is
provided in most topics.

How to achieve the fastest results with SBList
How to clip, wrap, tab and truncate
How to create a list of check boxes
How to drag and drop items between two lists
How to drag and drop multiple list items
How to reposition list items using drag and drop
How to use the AddPacket method
How to use the RightButton property
How to use the Sorted property
How to use the SortedOn property
Problems with pictures?

Compatibility issues

All code samples have been written and tested using Visual Basic 4.0 32-bit Professional Edition.
Topics devised by Andy Groom. Last revision 16/2/97.

How to achieve the fastest results with SBList

If you have used the SBList demo program you will have seen that SBList can out-perform
the standard Visual Basic list box by almost 100%. This is achieved by using the AutoDraw
property which gives you control over the drawing of the list box.

A standard list box refreshes itself automatically after you add or remove an item, and so
does SBList when the AutoDraw property is set to true, which is the default setting.
However, the nature of a list box means that typically you would add more than just one
item to the list at a time, and so there is little point in refreshing the list until it contains all
the items that you want to add.

By setting the AutoDraw property to false before you add or remove list items you are
allowing SBList to update its contents without having to refresh after each change. For only a
few items this doesn’t make much difference to the speed, but for longer lists the change is
dramatic. Also, because SBList offers you the ability to include images and font changes on
each line, it does take slightly longer to populate a list if you take advantage of these
features. The AutoDraw property minimises this delay.

The code below will add 224 items to a list taking advantage of the AutoDraw feature:

SBList1.AutoDraw = False
For A% = 32 to 256

SBList1.AddItem "Char " & A% & " is a " & Chr$(A%)
Next A%
SBList1.AutoDraw = True

This gives you powerful control over your list. For example, you might have a list showing
the results of a database search. When the user starts a new search you can set AutoDraw
to false, clear your SBList and add the new results to it while the previous search information
remains visible in the list. Once the new search is complete, just update the list by setting
AutoDraw back to true. The example below demonstrates this principle:

Form1_Click()
Static B%
SBList1.AutoDraw = False
SBList1.Clear
For A% = 1 to 500

SBList1.AddItem "This is item " & (A% + B%)
Next A%
B% = B% + A%
SBList1.AutoDraw = True

End Sub

Each time you click the form, the list is updated but only refreshed once the updates are
completed.

When the visible property of an SBList is set to false, the AutoDraw feature is ignored and
the list does not refresh until it is made visible.

Note: The standard Refresh method does not redraw the list items when AutoDraw is set to
false; you must use the AutoDraw method as shown above.

How to use the RightButton property

Windows95 and NT4 are much improved with the use of popup menus, and SBList has a
RightButton property to help you take advantage of this feature. A standard list box does not
react to right-mouse clicks in the same way it does to left-mouse clicks, so you must first
select a list item by left-clicking it, and then right-click it to pop up a menu. SBList allows you
to select list items with the right mouse button, which makes life much easier!

When you show a popup menu, it is a Windows convention that any irrelevant menu items
are hidden in order to make the menu as compact as possible. To do this, you need to know
whether the user has right-clicked on a list item or in the space which follows the last item in
the list. To do this, you can use this formula:

Sub SBList1_MouseUp(Button%, Shift%, X&, Y&)*
If ((Y& / Screen.TwipsPerPixelY) > ((SBList1.ListCount -
SBList1.TopIndex) * SBList1.ItemHeight)) then

' We have not clicked on a list item
Else

' We have clicked on a list item
End If

End Sub

The formula assumes that you have set the ItemHeight property, which fixes the pixel height
of each list item. The default value is 0, so you need to make sure that it has been set or this
formula will not work. As a guideline, MS Sans Serif at 8.25 point has an ItemHeight of about
14.

Note: If the user right-clicks on the space at the bottom of a list instead of on a list item, it
does not invalidate the current ListIndex. This can be potentially confusing, because the user
might assume that the menu which appears ought to be relevant to the selected item, when
in fact it won’t be. To avoid this, you could set the ListIndex to -1 as the first line of code
after a right-click on empty space is detected.

(* Data type declarations have been used to shorten this line)

How to drag and drop items between two lists

"Drag and drop" is a standard Windows feature which most programs support in some form
or other. Dragging items from one list into another list is not particularly an SBList innovation
- the code shown below will work equally well with a standard list box.

For this demonstration you will need to draw a form which has an SBList control array of two
list boxes called SBList1(0) and SBList1(1).

Copy this bitmap (somehow!) into SDKPaint as a cursor and set the magenta pixels as being
the screen colour. Remember to set the hotspot at the tip of the pointer arrow. Save the
image as a cursor and then load it as the DragIcon image for your two SBLists.

1. Insert the following code into your General Declarations section:

Dim OrigX As Integer
Dim OrigY As Integer
Dim OrigIndex As Integer

These variables will be used to keep track of where the drag began and which list item we
are dragging.

2. Insert the following code into your Form_Load event:

For A% = 1 To 10
SBList1(0).AddItem "List item " & A%

Next A%

This is just to give us some items to drag around.

3. Insert the following code into your SBList1_MouseDown event:

OrigX = X
OrigY = Y
OrigIndex = SBList1(Index).ListIndex

We are storing the X and Y position of the mouse so that we can measure how far it has
moved in the MouseMove event, and only start the drag operation when it’s clear that the
user is dragging rather than just clicking badly.

4. Insert the following code in your SBList1_MouseMove event:

If (Button And 1) = 1 Then
If Abs(OrigX - X) > 45 Or Abs(OrigY - Y) > 45 Then

' Drag this list item...
SBList1(Index).ListIndex = OrigIndex
SBList1(Index).Drag

End If
End If

The user has the mouse button held down, and in the second line we are measuring how
far it has moved since it was held down. The current tolerance is 45 twips in any direction
(roughly 3 pixels). Once we are happy that the user is dragging, we set the list index to
which ever item the MouseDown event was fired on (the mouse may have strayed onto

the item above or below the original choice) and commence dragging.

5. Insert the following code in your SBList1_DragDrop event:

If Source.hWnd <> SBList1(Index).hWnd Then
SBList1(Index).AddItem Source.List(OrigIndex)
Source.RemoveItem OrigIndex

Else
Beep

End If
Source.Drag 0

This is the final step of the operation. If the item has been dropped into the same list as it
was dragged from, we beep, otherwise we copy the item across and delete it from the
source list.

This technique only works for dragging single list items. It’s more complicated to drag
multiple list items (like you can do in Explorer) but it is possible. This can only be done with
an SBList, though. The general principle behind the code above can also be enhanced to
allow the user to move list items around within the same list. Click the topics below for more
information on either of these techniques.

How to drag and drop multiple list items
How to reposition list items using drag and drop

How to drag and drop multiple list items

If you cast your mind back to Windows 3.1, you will probably remember File Manager.
Dinosaur that it was, it did introduce one cool feature which was at that time new to
Windows - multiple item drag and drop. You could select a range of files from the file list and
then drag them into a different subdirectory or drive.

You can’t achieve this with a standard list box because as soon as you highlight a range of
list items and then try to begin a drag operation, all the selected items are cleared. SBList
has an extra MultiSelect property to allow you to create a multiple item drag and drop list.

For this demonstration you will need to draw a form which has an SBList control array of two
list boxes called SBList1(0) and SBList1(1). Set the MultiSelect property of both lists to
setting “3 - Special“.

Copy this bitmap (somehow!) into SDKPaint as a cursor and set the magenta pixels as being
the screen colour. Remember to set the hotspot at the tip of the pointer arrow. Save the
image as a cursor and then load it as the DragIcon image for your two SBLists.

1. Insert the following code into your General Declarations section:

Dim OrigX As Integer
Dim OrigY As Integer

These variables will be used to keep track of where the drag began.

2. Insert the following code into your Form_Load event:

For A% = 1 To 10
SBList1(0).AddItem "List item " & A%

Next A%

This is just to give us some items to drag around.

3. Insert the following code into your SBList1_MouseDown event:

OrigX = X
OrigY = Y

We are storing the X and Y position of the mouse so that we can measure how far it has
moved in the MouseMove event, and only start the drag operation when it’s clear that the
user is dragging rather than just clicking badly.

4. Insert the following code in your SBList1_MouseMove event:

If (Button And 1) = 1 Then
If Abs(OrigX - X) > 45 Or Abs(OrigY - Y) > 45 Then

' Begin the Drag operation...
SBList1(Index).Drag

End If
End If

The user has the mouse button held down, and in the second line we are measuring how

far it has moved since it was held down. The current tolerance is 45 twips in any direction
(roughly 3 pixels). Once we are happy that the user is dragging we commence the drag
operation.

5. Insert the following code in your SBList1_DragDrop event:

If Source.hWnd <> SBList1(Index).hWnd Then
Source.AutoDraw = False
SBList1(Index).AutoDraw = False
' Move the selected items across...
Do While Source.SelCount

If Source.Selected(A&) = True Then
SBList(Index).AddItem Source.List(A&)
Source.RemoveItem A&

Else
A& = A& + 1

End If
Loop
Source.AutoDraw = True
SBList1(Index).AutoDraw = True

Else
Beep

End If
Source.Drag 0

This is the final step of the operation. If the item has been dropped into the same list as it
was dragged from, we beep. Otherwise, we go through each item in the source list and
copy across any selected items into the target list. When there are no more selected
items we exit the loop. We turn off AutoDraw before we start moving items around so that
(a) the operation is faster, and (b) the lists update simultaneously.

How to reposition list items using drag and drop

It’s much easier for the user to set the order of list items by dragging them into position
rather than providing clumsy up and down buttons to shift things around. For example, if you
have a user who wants to customise the order in which a list of database fields are displayed
on screen, then you could create a list containing those fields and simply tell the user to
drag them around until they’re in the desired order.

For this demonstration you will need to draw a form which has a single SBList on it. Set the
ItemHeight property of the list to 16.

Copy this bitmap (somehow!) into SDKPaint as a cursor and set the magenta pixels as being
the screen colour. Set the hotspot anywhere on the top edge of the rectangular block. Save
the image as a cursor and then load it as the DragIcon image for your SBList.

1. Insert the following code into your General Declarations section:

Dim OrigX As Integer
Dim OrigY As Integer
Dim OrigIndex As Integer

These variables will be used to keep track of where the drag began and which list item we
are dragging.

2. Insert the following code into your Form_Load event:

For A% = 1 To 10
SBList1.AddItem "List item " & A%

Next A%

This is just to give us some items to drag around.

3. Insert the following code into your SBList1_MouseDown event:

OrigX = X
OrigY = Y
OrigIndex = SBList1.ListIndex

We are storing the X and Y position of the mouse so that we can measure how far it has
moved in the MouseMove event, and only start the drag operation when it’s clear that the
user is dragging rather than just clicking badly.

4. Insert the following code in your SBList1_MouseMove event:

If (Button And 1) = 1 Then
If Abs(OrigX - X) > 45 Or Abs(OrigY - Y) > 45 Then

' Drag this list item...
SBList1.ListIndex = OrigIndex
SBList1.Drag

End If
End If

The user has the mouse button held down, and in the second line we are measuring how
far it has moved since it was held down. The current tolerance is 45 twips in any direction

(roughly 3 pixels). Once we are happy that the user is dragging, we set the list index to
which ever item the MouseDown event was fired on (the mouse may have strayed onto
the item above or below the original choice) and commence dragging.

5. Insert the following code in your SBList1_DragOver event:

NewIndex = Int(SBList1.TopIndex + ((Y / Screen.TwipsPerPixelY) /
SBList1).ItemHeight))
If NewIndex < SBList(Index).ListCount Then SBList1.ListIndex = NewIndex

We calculate which list item the mouse is over in the first line of code, and select it in the
second line (provided that it exists). This is so that as you drag the mouse around, the list
item which you are going to insert before is highlighted and the user doesn’t have to
guess where the dragged list item will be dropped.

6. Insert the following code in your SBList1_DragDrop event:

N$ = Source.List(OrigIndex)
LI% = Source.ListIndex
If LI% > OrigIndex Then

Source.RemoveItem OrigIndex
Source.AddItem N$, LI% - 1

ElseIf LI% < OrigIndex Then
Source.RemoveItem OrigIndex
Source.AddItem N$, LI%

End If
Source.ListIndex = LI%

In this code we remove the item which was dragged and re-add it to the list in the
relevant position. If the dragged item is being dropped lower down the list than it started,
we need to take that into account when we remove it and re-add it, because after we
remove it all the list items will have shifted up one place. If it was dropped above itself
this isn’t a concern. If the item was dropped on itself, we simply ignore it.

In the last line of code we select the item which we originally dragged.

How to create a list of check boxes

Once you have begun to experiment with SBList you will come up with new and imaginative
ways of using it - one of the first may well be creating a list of check boxes. Standard check
boxes are very useful in situations where you will always have the same number of options,
but there are situations where you simply don’t know how many you might need.

For example, suppose you wanted to display a list of users and tick the ones which had
administrator privileges. There could be 5 or 500 users; you have no way of knowing. You
could create a control array of check boxes and load as many new check boxes as required,
but you may end up needing a huge form just to show them all! A far easier solution is to
use an SBList to simulate an array of check boxes.

This is how your list might appear. Each entry in the list looks like a normal check box and
will act like a normal check box when clicked, but there is virtually no limit to the number of
boxes you can display.

For this demonstration you will need to draw a form which has a single SBList on it. Set the
ItemHeight property of the list to 15, set the BackColor to light-grey, and set the TextLeft
property to 18. You will also need a control array of two Image controls - Image1(0) will hold
the un-ticked box, Image1(1) will hold the ticked box (shown below).

We will be using the ItemData property of each list item to hold the ticked status - true or
false.

1. Insert the following code into your Form_Load event:

For A% = 1 To 10
SBList1.AddPacket -1, "Item " & A%, "", , Image1(0).Picture

Next A%

This will place 10 items in the list, all with empty tick boxes. The ItemData parameter is
not specified in the AddPacket statement, and so the default value of 0 is used. This is
fine for us, because 0 (or False) indicates an empty tick box.

2. Insert the following code into your SBList1_DblClick event:

With SBList1
NewSetting% = Not .ItemData(.ListIndex)
Set .ItemPicture(.ListIndex) = Image1(-NewSetting%).Picture
.ItemData(.ListIndex) = NewSetting%

End With

On the first line we toggle the ItemData value for the list item which has been double-
clicked. We then change the image in the list to reflect the new setting. Finally, we write
the toggle value back to the ItemData property.

3. Insert the following code into your SBList1_Click event:

If X <> -1 and Y <> -1 then SBList1_DblClick 1

Here we test whether the bitmap itself has been clicked, and if it has we react as though a
double-click had taken place. The SBList Click event returns the X,Y position of the cursor
if it is clicked on the bitmap element of a list item, and it returns -1 for both values if the
bitmap element of the line was not clicked.

This bit of code is optional, depending on whether you feel it is logical or not. The idea
behind it is that in order to change the tick mark the user must either double-click the
text of the list item, or single-click the bitmap part of the list item.

You can’t use the normal Click event to toggle the tick mark, otherwise it would change state
whenever you select any list item with just a normal click, which is why we have used
double-click in the example.

To give you another idea of what is possible, below is a screen-shot of an SBList as it is used
in one of my programs for choosing which machines on a network can have access to a
particular file. I’ve used the HighLeft property to prevent the highlight bar from intruding
onto the image, and also various tab and font settings to enhance the layout of the
information which the list is displaying.

Tweaks
There are a couple of ways in which you can tweak this routine depending on how much like
a list of check boxes you want your list to appear. For example:

You can set the HighForeColor and HighBackColor properties to the same colours as the
ForeColor and BackColor properties so that the highlight bar does not show up.

You can set the list Border style to False so that there is no obvious outline to the list.

You can set the HighLeft property to specify an indent from the left-hand side of the list
where the highlight bar begins.

Those who seek perfection will have noticed that the list’s BackColor has to be set to light
grey in order for this example to appear correctly. To avoid this limitation you can use an
ImageList control to hold the ticked and unticked images and then mask them against the
default background color of the list.

How to use the Sorted property

The Sorted property of an SBList can be changed at runtime, something which a standard
list box does not offer. This makes displaying list items exactly how you want them much
easier.

For example, suppose you wanted to show a list of users in your program, sorted into
alphabetical order, but have a special user called “Visitor” which allowed access into the
program but with reduced privileges. It would be much clearer if this Visitor name appeared
at the top of the list, with the names listed alphabetically below, but how would you normally
program that? The easiest way would be to have a sorted list box hidden away on the form
somewhere; dump the users into it so that they get sorted, then copy them into your visible
list and add the “Visitor” name at the top? Sound familiar? Here’s how to do it with just one
SBList:

For this demonstration you will need to draw a form which has a single SBList on it.

1. Insert the following code into your Form_Load event:

Names$ = "Fred,Steve,Andy,Cindy,Clive,Sandra,George,"
SBList1.Sorted = True
Do While Names$ <> ""

P& = Instr(Names$, ",")
SBList1.AddItem Left$(Names$, P& - 1)
Names$ = Mid$(Names$, P& + 1)

Loop
SBList1.Sorted = False
' Add this item at the top of the list...
SBList1.AddItem "Visitor", 0

As you can see, once the Sorted property is turned off (at the end of the code) you can add
any items to the list exactly where you want them.

If you turn the Sorted property on and off, adding items here and there, the final sort order
will probably not be what you expected. Once you have turned off sorting and added more
items where you wanted them to go, turning Sorted back on and adding more items may not
place them in the order you expected. In fairness, you would be missing the objective behind
a controllable Sorted property:

Normally, when you draw a list box on a form you have to choose whether it will be sorted or
not, and then you’re stuck with it. The Sorted property of the SBList is changeable but the
intention was that you would only alter the setting when the list is empty. In other words,
you would decide at runtime whether you wanted to display items sorted or in their original
order, and set the property accordingly before populating the list.

The sample code above shows you how to take advantage of this feature to give you control
over the order of list items, and you may discover even further refinements, but be warned
that changing the Sorted property too often may give you sleepless nights!

How to use the SortedOn property

The SortedOn property gives you control over the criteria which SBList uses to sort list items
when you have the Sorted property set to true. You can base your sort on the text which
appears in the list (just like a standard list box), or on the .ItemText value for each list item,
or on the .ItemData value for each item.

A good way of visualising this feature is to think about a list containing all the files in your
Windows directory. The list always has the same columns of information; File name, Size, and
Date. When you add the files to a standard list box, the only way to sort them would be on
File name, unless you displayed the columns in a different order so that Size was the first
column, and then they would appear in order of size. There would be no way of keeping the
columns in the same order because the sort method only works on the text of each list item.
With an SBList you can sort your items on the .ItemText value, which is transparent to the
user, and always have your columns in the same order.

For this demonstration you will need to draw a form which has a single SBList on it. Set the
Sorted property to true. You will also need a control array of three command buttons - set
the caption of Command1(0) to “By Name”, Command1(1) to “By Size” and Command1(2)
to “By Extension”.

1. Insert the following code into your Form_Load event:

With SBList1
.TabWidth(0) = 100
.TabWidth(1) = 140

End With

This sets up our list columns. The first column (from pixel 0 to 99) will hold the file name
less the file extension. The second column (from pixel 100 to 139) will hold the file
extension, and the third column (from pixel 140 onwards) will hold the file size.

2. Insert the following code into your Command1_Click event:

SBList1.Clear
' When Index is 0, we sort on Common$ (.List)
' When Index is 1, we sort on Size& (.ItemData)
' When Index is 2, we sort on Ext$ (.ItemText)
SBList1.SortedOn = Index

P$ = "C:\"
D$ = Dir$(P$ & "*.*")
Do While D$ <> ""

' Does the current file have an extension?
If Instr(D$, ".") Then

Ext$ = Mid$(D$, Instr(D$, ".") + 1)
File$ = Left$(D$, Instr(D$, ".") - 1)

Else
Ext$ = ""
File$ = D$

End If
Size& = FileLen(P$ & D$)
' The \t code represents the Tab character
Common$ = File$ & "\t" & Ext$ & "\t" & Size&
SBList1.AddPacket -1, Common$, Ext$, Size&

D$ = Dir$
Loop

When you run this program and click the three buttons, the list will fill up sorted on either
the file name, extension or size. The point here is that (a) we didn’t have to write three
routines to fill the list in three different ways, (b) we didn’t have to change the order of the
columns in order to display the list items in a different order, and (c) we didn’t need two
lists; one list to sort the items and a second list to display them.

Note: When you sort on the .ItemData value, the list is sorted into correct numeric order (1,
2, 3, 4 ...) as opposed to ANSI sort order (1, 10, 11, 2 ...).

How to use the AddPacket method

The AddPacket method was borne out of laziness, and simply provides a code-efficient way
of adding a list item. The two code samples below both achieve the same result:

SBList1.AddItem "Hi!"
SBList1.ItemText(SBList1.NewIndex) = "XYZ"
SBList1.ItemData(SBList1.NewIndex) = 123
SBList1.ItemPicture(SBList1.NewIndex) = Pic1.Picture
SBList1.ItemBackColor(SBList1.NewIndex) = QBColor(12)

is the same as:

SBList1.AddPacket -1, "Hi!", "XYZ", 123, Pic1.Picture, QBColor(12)

In short, AddPacket saves you having to reference the most recent list item (NewIndex)
when you want to set the most commonly used item values. The first three parameters of
AddPacket are the minimum requirement; after all, if you only want to set the list text and
position you might as well just use AddItem. An easy mistake to make is to accidentally omit
the ItemText value (the third value in the sequence) when you are specifying the picture
value. For example:

SBList1.AddPacket -1, "Hi!", , , Pic1.Image

will generate an "Argument not optional" error message at design time. The correct syntax
is:

SBList1.AddPacket -1, "Hi!", "", , Pic1.Image

You can also use indirect references in place of standard references for the Picture element
of AddPacket. For example:

SBList1.AddPacket -1, "Hi!", "XYZ", 123, imagelist1.ListImages(5)

However, you cannot link an ImageList control to an SBList in the same way as you can with
the Microsoft TreeView control, for example. You must use an indirect reference as shown
above.

How to Clip, Wrap, Tab and Truncate

SBList offers a number of options to control the display of your text, and at first the choice
can be quite bewildering. Here is an explanation of how the different features work.

Tabs
SBList allows you to set up to 32 tab positions within a list, creating 33 columns of
information. By default all the tabs are set to 0, so if you create a list without setting the
tabs and then add lines to the list which contain tab characters, you will end up with all
your text over-printing itself:

You don’t have to set tabs in sequential order, so you can have your first tab at 100 pixels
from the left-hand side of the list box, and your second tab 10 pixels from the left if you
want.

Wrapping
When you want to display text on more than one line, you need to set your tabs carefully
or you may not end up with what you expected, as you can see in the example above.
Here we have tabs set (in order) at 30, 140, and 30 again.

The first tab sets where the bold caption appears, the second tab places the Page number,
and the third tab places the italic sub-text underneath the bold caption. The actual text
which was added as the first line of the list was:

"1.\t\BHello world!\b\tPage 1\n\t\IThe Introduction\i"

(The control codes are shown in red to help clarify the syntax).

Clipping
The ClipText and AutoClip properties control the over-printing of text in one column over
the next column. When you have AutoClip set to True, the text in one column will only spill
into the next column if that column is empty, otherwise it will be truncated:

AutoClip = False, ClipText = False

Without clipping, text simply appears over the top of whatever might be underneath. This
can be used to your advantage; for example, you can deliberately print over a bitmap.

AutoClip = True, ClipText = False

With AutoClip set to true, the addition of the page number in the second line prevents the
text from continuing, so over-printing is avoided.

AutoClip = False, ClipText = True

With ClipText set to true, the ‘intelligence’ is taken out of clipping so that text is truncated
whether it would cause over-printing or not.

The Ellipsis property can tidy up clipping by truncating a word to fit as many complete
characters as possible in the space available (so that you don’t get half a letter as above),
and then adds three periods (...) to show that truncation has taken place.

Problems with pictures?

Enter the sample code below. You will need to draw an SBList on your form and set its
TextLeft property to 15. You will also need a Picture box 210x210 twips in size, with its
ScaleMode property set to 3 (pixels) and its AutoRedraw property set to True.

1. Insert the following code into your Form_Click event:

For A% = 0 To 15
Picture1.Line (0, 0)-(10, 10), QBColor(A%), BF
SBList1.AddPacket -1, "QBColor" & A%, "", , Picture1.Image

Next A%

The logic of it should produce a list of 16 items showing the QBColor shade and value of
each item when you click the form:

However, as you will see when you run it you actually end up with a list where all the images
are white. To see exactly what is going on, modify the code above to read:

For A% = 0 To 15
Picture1.Line (0, 0)-(10, 10), QBColor(A%), BF
SBList1.AddPacket -1, "QBColor" & A%, "", , Picture1.Image
T# = Timer + .5
Do While Timer < T#

DoEvents
Loop

Next A%

Now run the program again, and you will see that the picture box is in fact changing colour
correctly, but after each change it affects all the images already displayed in the list. When
this feature was discovered we decided to leave it in just in case it had some useful
application! Besides, it’s easy to program around it - simply add the line:

Picture1.Cls

at the beginning of the loop and the problem is solved.

Why does this happen? When you add a picture to SBList, the picture is linked to the list
item by a reference number. When you perform a destructive operation on the source
picture (like Cls or LoadPicture), the image and reference number are frozen and stored in
memory so that your list image doesn’t change when the source image is destroyed. In the
first block of code above, the same reference number is being used for all 16 list items
because the Line operation is not a destructive one - if it was, you could only ever draw one
line on a picture control!

Compatibility issues

Can you replace your existing list boxes with SBLists? Of course you can, but first you need
to check that you have considered the points below.

Messages
SBList reacts to standard list messages like lb_FindStringExact only while it is visible, but
ignores them if it is hidden (its Visible property is set to False).

The following messages can be replaced as shown:

Li& = SendMessage(SBList1.hWnd, lb_FindString, -1, F$)
becomes

Li& = SBList1.FindString(F$)

Li& = SendMessage(SBList1.hWnd, lb_FindString, 6, F$)
becomes

Li& = SBList1.FindString(F$, 6)

Li& = SendMessage(SBList1.hWnd, lb_FindStringExact, 2, F$)
becomes

Li& = SBList1.FindString(F$, 2, 1)

See FindString for more information.

Methods

All of the methods for this control are listed in the following table.

AddItem AddPacket AddPicture Clear
Drag FindData FindString LoadList
Refresh RemoveItem SaveList SelectAll
SelectNone SetFocus

AddItem Method
See Also Examples

Adds an item to the list box.

Syntax

SBList1.AddItem item, [index]

item Required. String expression specifying the item to add to the list box.

Index Optional. Long integer specifying the position within the list box where the new item is
placed. For the first item in a list box, index is 0.

Remarks
If you supply a valid value for index, item is placed at that position within the list box. If index is omitted,
item is added at the proper sorted position (if the Sorted property is set to True) or to the end of the list (if
Sorted is set to False). If the Sorted property is set to True the index property is ignored. Note that unlike
a standard list box, the Sorted property may be changed at run time.

If you are entering many items in succession, faster loading will be achieved by setting AutoDraw to
False before using AddItem, then set AutoDraw to True afterwards. If you do not use AutoDraw the list
box will attempt to draw each item as it is added.

Examples

SBList1.AddItem "France"

SBList1.AddItem "Italy", 5

See Also

AddItem Method

AddPicture Method

AutoDraw Property

Clear Method

RemoveItem Method

Sorted Property

AddPacket Method
See Also Examples Knowledge Base

Adds an item to the list box, complete with all extra attributes.

Syntax

SBList1.AddPacket index, item, itemtext, [itemdata], [pic], [color]

Index Required. Long integer specifying the position within the list box where the new item is
placed. For the first item in a list box, index is 0. To place an item at the end of the list set
index to -1.

item Required. String expression specifying the item to add to the list box.

itemtext Required. String expression placed in item's associated ItemText value.

itemdata Optional. Long numerical value placed in item's associated ItemData value.

pic Optional. Picture to be displayed with item.

color Optional. Color value used as background for item, stored as ItemBackColor.

Remarks
If the Sorted property is set to True the index property is ignored. Note that unlike a standard list box, the
Sorted property may be changed at run time.

If you are entering many items in succession, faster loading will be achieved by setting AutoDraw to
False before using AddItem, then set AutoDraw to True afterwards. If you do not use AutoDraw the list
box will attempt to draw each item as it is added.

See Also

AddPacket Method

AddPicture Method

AutoDraw Property

Clear Method

RemoveItem Method

Sorted Property

Examples

SBList1.AddPacket -1, "Germany", "Berlin"

SBList1.AddPacket 23, "Italy", "Rome", 2435, , RGB(255, 0, 0)

SBList1.AddPacket 0, "England", "London", 1, Image1.Picture

SBList1.AddPacket -1, "Zaire", "", , , RGB(0, 255, 0)

SBList1.AddPacket 5, "USA", "Washington", 1776, Image1.Picture, &H8000000F&

Knowledge Base

How to create a list of check boxes

How to use the AddPacket method

Problems with pictures ?

AddPicture Method
See Also Examples Knowledge Base

Adds a new item consisting of only a picture.

Syntax

SBList1.AddPicture picture [, index]

picture A picture

index Optional. Integer value

Remarks

This method will add a new item to the list box consisting of just the picture specified with the picture
value. The item will be inserted at the position specified with index, or if omitted the item will be added to
the end of the list. If index is set to –1 the picture will also be added to the end of the list.

See Also

AddItem Method

AddPacket Method

ItemPicture Property

PicLeft Property

PicTop Property

Examples

SBList1.AddPicture Picture1.Picture
SBList2.AddPicture LoadPicture(“c:\mypic.bmp”), 6
SBList1.AddPicture frmGraphics.Image1.Picture, -1

Clear Method
See Also Example

Removes all items from the list box.

Syntax

SBList1.Clear

Remarks

If the AutoDraw property is set to False, the items will not appear to have been deleted although in fact
they will have been. No update will occur until AutoDraw is set back to True.

See Also

AutoDraw Property

Example

SBList2.Clear

Drag Method
See Also Knowledge Base

Begins, ends, or cancels a drag operation.

Syntax

SBList1.Drag action

action Optional. A constant or value that specifies the action to perform, as described in Settings.
If action is omitted, the default is to begin dragging the object.

Remarks

The settings for action are:

Constant Value Description
vbCancel 0 Cancels drag operation.
vbBeginDrag 1 Begins dragging object.
vbEndDrag 2 Ends dragging and drop object.

See Also

DragDrop Event

DragIcon Property

DragOver Event

FindData Method
See Also Examples

Returns index of list item with matching item data value.

Syntax

SBList1.FindData value [, index]

value A long value to search on.

index Optional. Index of item to begin searching from.

Remarks

This method searches through all the list items, starting at the position specified by index, until the item
data value of an item matches the number in value. Once the search reaches the end of the list box,
searching will resume at index 0 until all items have been searched. The number returned is the index of
the matching item, or –1 if no match was found.

See Also

AddPacket Method

FindString Method

ItemData Property

Examples

ndx& = SBList1.FindData 1997, 45
i% = SBList1.FindData 56633

FindString Method
See Also Examples

Returns index of item matching string search criteria.

Syntax

SBList1.FindString value [, mode] [, index]

value String value to perform search on.

mode Optional integer.Type of search, default is 1.

index Optional. Index of item to begin searching from.

Remarks

This method searches through all the list items, starting at the position specified by index, until the list
text or item text value of an item matches the string in value. Once the search reaches the end of the list
box, searching will resume at index 0 until all items have been searched. The number returned is the
index of the matching item, or –1 if no match was found. The searching is not case sensitive, and ignores
any escape codes.

The type of search is specified with the mode parameter :

Constant Value Description
sbFindListTextStart 0 Searches the list text for a string that starts with value.
sbFindListTextExact 1 Searches the list text for a string that exactly matches

value.
sbFindListTextWild 2 Searches the list text for a string that contains value

within it.
sbFindItemTextStart 4 Searches the item text for a string that starts with value.
sbFindItemTextExact 5 Searches the item text for a string that exactly matches

value.
sbFindItemTextWild 6 Searches the item text for a string that contains value

within it.

See Also

AddPacket Method

FindData Method

ItemText Method

Examples

i% = SBList1.FindString “Belgium”, 1, 34
x& = SBList1.FindString “tion”, 2
j& = SBList1.FindString “Cairo”, 4
h& = SBList1.FindString “Canada”, , 99

i% = SBList1.FindString “Belgium”, sbFindListTextExact, 34
x& = SBList1.FindString “tion”, sbFindListTextWild
j& = SBList1.FindString “Cairo”, sbFindItemTextStart

LoadList Method
See Also Examples

Loads list box contents from a file

Syntax

SBList1.LoadList filename

filename A file name.

Remarks

Loads a list box with the contents previously saved using the SaveList method. As well as the actual list
item the item data, item text and background color for each list item is also loaded. The list box is cleared
before loading, and the list is loaded in the same order as it was previously saved with, regardless of the
Sorted property.

See Also

SaveList Method

Examples

SBList1.LoadList “c:\mylist.lst”
FrmMain.SBList2.LoadList “appdata.lst”

Refresh Method

Forces a complete repaint of a list box.

Syntax

SBList1.Refresh

Remarks

Generally, painting a list box is handled automatically while no events are occurring. However, there
may be situations where you want the list box updated immediately.

RemoveItem Method
See Also Examples

Removes a single item from the list box.

Syntax

SBList1.RemoveItem value

value A number between 0 and ListCount – 1

Remarks

Removes an item from a list box. If AutoDraw is set to false the list box will not change visually until
AutoDraw is set back to true

See Also

AutoDraw Property

Clear Method

Examples

SBList1.RemoveItem 10

SaveList Method
See Also Examples

Saves list box contents to file.

Syntax

SBList1.SaveList filename

Filename A file name.

Remarks

Saves the complete contents of a list box, including each items item data, item text and back color
attributes. The LoadList method is used to load data back to the list box.

See Also
LoadList Method

Examples

SBList1.SaveList “c:\appdata.lst”

SelectAll Method
See Also

Selects all items.

Syntax

SBList1.SelectAll

Remarks

Selects every item in the list box. Only available if MultiSelect is not set to 0-None.

See Also

MultiSelect Property

Selected Property

SelectNone Method

SelectNone Method
See Also

De-selects all items

Syntax

SBList1.SelectNone

Remarks

Removes selection from all items in a list box.

See Also

MultiSelect Property

SelectAll Method

Selected Property

SetFocus Method
See Also

Moves the focus to the list box

Syntax

SBList1.SetFocus

Remarks

The ShowFocus property determines if a focus rectangle is drawn or not.

See Also

GotFocus Event

LostFocus Event

ShowFocus Property

Events

All of the events for this control are listed in the following table.

Click DblClick DragDrop DragOver
GotFocus KeyDown KeyPress KeyUp
LostFocus MouseDown MouseMove MouseUp

Click Event
See Also

Syntax

Private Sub SBList1_Click ([Index As Integer,] ByVal Button As Integer, ByVal X As Integer, ByVal Y
As Integer)

Index An integer that uniquely identifies a control if it's in a control array.

Button Value is 1 for left mouse button, 2 for right. If event was fired by setting the ListIndex
property, then Button is –1.

X The horizontal position of the cursor over an items’ image. If the cursor is not over the
image, or no image exists, -1 is returned.

Y The vertical position of the cursor over an items’ image. If the cursor is not over the image,
or no image exists, -1 is returned.

Remarks

This event is fired when :
· A user clicks on an item with the mouse
· The ListIndex property is set, provided FireClick is True.
· The Selected property is changed, provided FireClick is True

The X and Y parameters are only used when an item contains a picture. If a picture exists and the mouse
was clicked with the cursor on the picture then the co-ordinates are returned, otherwise they each return
–1.

See Also

FireClick Property

ListIndex Property

Selected Property

DblClick Event

Syntax

Private Sub SBList1_DblClick ([Index As Integer,] ByVal Button As Integer)

Index An integer that uniquely identifies a control if it's in a control array.

Button Value is 1 for left mouse button, 2 for right.

Remarks

This event is fired when the user double clicks a list item.

DragDrop Event
See Also Knowledge Base

Occurs when a drag-and-drop operation is completed as a result of dragging a control over a form or
control and releasing the mouse button or using the Drag method with its action argument set to 2 (Drop).

Syntax

Private Sub SBList1_DragDrop([Index As Integer,] Source As Control, X As Single, Y As Single)

Index An integer that uniquely identifies a control if it's in a control array.

Source The control being dragged. You can include properties and methods with this argument-for
example, Source.Visible = 0.

X,Y A number that specifies the current horizontal (x) and vertical (y) position of the mouse
pointer within the target form or control. These coordinates are always expressed in terms
of the target's coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and
ScaleTop properties.

Remarks

Use a DragDrop event procedure to control what happens after a drag operation is completed. For
example, you can move the source control to a new location or copy a file from one location to another.

See Also

Drag Method

DragIcon Property

DragOver Event

DragOver Event
See Also

Occurs when a drag-and-drop operation is in progress.

Syntax

Private Sub SBList1_DragOver([Index As Integer,] Source As Control, X As Single, Y As Single,
State As Integer)

Index

Source The control being dragged. You can refer to properties and methods with this argument-for
example, Source.Visible = False.

X,Y A number that specifies the current horizontal (x) and vertical (y) position of the mouse
pointer within the target form or control. These coordinates are always expressed in terms
of the target's coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and
ScaleTop properties.

State An integer that corresponds to the transition state of the control being dragged in relation to
a target form or control:
0 = Enter (source control is being dragged within the range of a target).
1 = Leave (source control is being dragged out of the range of a target).
2 = Over (source control has moved from one position in the target to another).

Remarks

Use a DragOver event procedure to determine what happens after dragging is initiated and before a
control drops onto a target.

See Also

Drag Method

DragDrop Event

DragIcon Property

GotFocus Event
See Also

Occurs when the list box receives the focus, either by user action, such as tabbing to or clicking the
object, or by changing the focus in code using the SetFocus method

Syntax

Private Sub SBList1_GotFocus([Index As Integer])

Index An integer that uniquely identifies a control if it's in a control array.

Remarks

By default the list box will display a focus rectangle around an item if the list box has focus. To turn this
focus rectangle off use the ShowFocus property.

See Also

LostFocus Event

SetFocus Method

ShowFocus Property

KeyDown, KeyUp Events
See Also

Syntax

Private Sub SBList1_KeyDown([Index As Integer,] KeyCode As Integer, Shift As Integer)

Private Sub SBList1_KeyUp([Index As Integer,] KeyCode As Integer, Shift As Integer)

Index An integer that uniquely identifies a control if it's in a control array.

KeyCode A key code

Shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the time of the
event. The shift argument is a bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to
the values 1, 2, and 4, respectively. Some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Remarks

For both events, the object with the focus receives all keystrokes.

See Also

KeyPress Event

KeyPress Event
See Also

Syntax

Private Sub SBList1_KeyPress([Index As Integer,] KeyAscii As Integer)

Index An integer that uniquely identifies a control if it's in a control array.

KeyAscii An integer that returns a standard numeric ANSI keycode. Keyascii is passed by reference;
changing it sends a different character to the object. Changing keyascii to 0 cancels the
keystroke so the object receives no character.

Remarks

Occurs when the user presses and releases an ANSI key.

See Also

KeyDown Event

KeyUp Event

LostFocus Event
See Also

Syntax

Private Sub SBList1_LostFocus([Index As Integer])

Index An integer that uniquely identifies a control if it's in a control array.

Remarks

Occurs when an object loses the focus, either by user action, such as tabbing to or clicking another
object, or by changing the focus in code using the SetFocus method.

See Also

GotFocus Event

SetFocus Method

ShowFocus Property

MouseDown, MouseUp Events
See Also

Syntax

Private Sub SBList1_MouseDown(Index As Integer, Button As Integer, Shift As Integer, X As Single,
Y As Single)

Private Sub SBList1_MouseUp(Index As Integer, Button As Integer, Shift As Integer, X As Single, Y
As Single)

Index An integer that uniquely identifies a control if it's in a control array.

Button Returns an integer that identifies the button that was pressed (MouseDown) or released
(MouseUp) to cause the event. The button argument is a bit field with bits corresponding
to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond
to the values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that
caused the event.

Shift Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when
the button specified in the button argument is pressed or released. A bit is set if the key is
down. The shift argument is a bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to
the values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed. For example, if both CTRL and ALT were pressed, the value of shift would be 6.

X,Y Returns a number that specifies the current location of the mouse pointer. The x and y
values are always expressed in terms of the coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties of the object.

Remarks

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a given mouse
button is pressed or released. Unlike the Click and DblClick events, MouseDown and MouseUp
events enable you to distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.

See Also

Click Event

DblClick Event

MouseMove Event

MouseMove Event
See Also

Syntax

Private Sub SBList1_MouseMove(Index As Integer, Button As Integer, Shift As Integer, X As Single,
Y As Single)

Index An integer that uniquely identifies a control if it's in a control array.

Button An integer that corresponds to the state of the mouse buttons in which a bit is set if the
button is down. The button argument is a bit field with bits corresponding to the left button
(bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1,
2, and 4, respectively. It indicates the complete state of the mouse buttons; some, all, or
none of these three bits can be set, indicating that some, all, or none of the buttons are
pressed.

Shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys. A bit is set if
the key is down. The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).
These bits correspond to the values 1, 2, and 4, respectively. The shift argument indicates
the state of these keys. Some, all, or none of the bits can be set, indicating that some, all,
or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the
value of shift would be 6.

X,Y A number that specifies the current location of the mouse pointer. The x and y values are
always expressed in terms of the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Remarks

The MouseMove event is generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the mouse
position is within its borders.

See Also

MouseDown Event

MouseUp Event

Text Formatting

Unlike a standard list box, each list box item in SBList may contain text comprised of different font styles
and colors, and each list box item may comprise text wrapped onto 2 or more lines. To change the
attribute or color, embed an escape character followed by a single character, which determines the style
of the following text. These characters are:

B , b Bold on/off
U , u Underline on/off
I , i Italic on/off
S , s Strikethru on/off

0 Change color to ForeColor.
1 , 2 , 3 , 4 Change color to ForeColor n .

n Throw a new line, equivalent to Chr$(10).
t Tab character, equivalent to Chr$(9).

Example:

“Hello \2\UWorld” appears as “Hello World”.

If you need to display an escape character then enter 2 consecutive ones, for instance \\ will display as \.

Credits

Special thanks to Andrew Groom for providing the accompanying demonstration program,
the knowledge base, and for his invaluable contributions during the development of this control.

Support

If you require any assistance, contact us at:

E-mail: GlobalCom@pobox.com

Address: Global Components
41 Milton Street
Northampton
NN2 7JG
United Kingdom

WWW: http://ds.dial.pipex.com/globalcom/

Release notes

2.0 Major speed increase
New FindData & FindString methods
New AutoDraw property
New SortedOn property
Sorted property can be set at run-time
ItemHeight can be set at run-time
New SaveList & LoadList methods
New MultiSelect property
New SelCount property
New Selected property
New SelectAll & SelectNone properties
New AutoClip property
Property pages removed
Bug fixes

1.2 HighLeft property
IntegralHeight property
Border property
Ellipsis property
Double escape character displays one escape chr.
Added \n for new line & \t for tab
Bug fixes

1.1 MouseIcon and Mousepointer properties added.
Bug fixes

1.0 First release.

Legal Notice

SBLIST OCX VERSION 2.0 (c) 1997 GLOBAL COMPONENTS

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. GLOBAL
COMPONENTS DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL GLOBAL COMPONENTS BE LIABLE FOR ANY DAMAGES WHATSOEVER
INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR
SPECIAL DAMAGES, EVEN IF GLOBAL COMPONENTS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES

Properties

All of the properties for this control are listed in the following table.

Appearance AutoClip AutoDraw BackColor
Border Cell CenterV ClipText
DotsHorizontal DotsVertical DragIcon DragMode
Ellipsis Enabled EscapeChr FireClick
Font ForeColor ForeColor1 ForeColor2
ForeColor3 ForeColor4 Height HelpContextID
HighBackColor HighForeColor HighLeft hWnd
Index IntegralHeight ItemBackColor ItemData
ItemHeight ItemPicture ItemText Left
LineColor LineHorizontal LineVertical List
ListCount ListIndex ListRaw MouseIcon
MousePointer MultiSelect Name NewIndex
PicLeft PicTop RightButton SelCount
Selected ShowFocus Sorted SortedOn
TabDots TabIndex TabLines TabStop
TabWidth Tag Text TextLeft
TextTop Top TopIndex Visible
WhatsThisHelpID Width

ListIndex is the default value of the control.

Appearance Property
See Also Examples

Returns or sets the paint style of the control.

Syntax

SBList1.Appearance = value

value 0 (flat) or 1 (3D). Paints control with specified effects.

Remarks

If value is set to 1 the list box will appear with a 3D effect, and the Border property will be ignored. Unlike
the standard list box, this property may be set at run-time. The default value is 1-3D.

See Also

Border Property

Examples

SBList1.Appearance = 1
i% = SBList2.Appearance

AutoClip Property
See Also Examples Knowledge Base

Performs intelligent column clipping

Syntax

SBList1.AutoClip = value

value True or False.

Remarks

If value is set to True the control will truncate text at each tab position defined with the TabWidth
property only if there is text in the next ‘cell’. If there is no text in the next cell, the current text will be
allowed to over run into it without truncation. To specify that no text exists in the next cell, place 2 tab
characters (or \t twice) in the text, or an end-of-line character (or \n). When set to True, the ClipText and
TabDots properties is ignored.

See Also

ClipText Property

TabWidth Property

Examples

SBList1.AutoClip = True
SBList1.Additem “Column 1 & 2\t\tColumn 3”

AutoDraw Property
See Also Examples Knowledge Base

Controls whether new added items are displayed immediately.

Syntax

SBList1.AutoDraw = value

value True or False

Remarks

The default value is True, which causes the list box to behave as normal. If set to False, items added to
the list box will not be made visible until AutoDraw is set back to True. This also applies to using the
Clear method. By setting this property to False before adding many items a huge performance gain will
be achieved.

See Also

AddItem Method

AddPacket Method

AddPicture Method

Clear Method

RemoveItem Method

Examples

SBList1.AutoDraw = False
SBList1.Clear
For i% = 1 to 500
 SBList1.AddItem “Item “ & Str$(i%)
Next i%
SBList1.AutoDraw = True

Knowledge Base

How to achieve the fastest results with SBList

BackColor Property
See Also Examples

Sets background color

Syntax

SBList1.BackColor = value

value A color value.

Remarks

This property sets the color used to paint the background of the list box. Individual list items can override
this color by use if the ItemBackColor property or AddPacket Method.

See Also

AddPacket Method

ItemBackColor Property

Examples

SBList1.BackColor = RGB(128,128,128)
SBList1.BackColor = &H8000000F&
SBList1,BackColor = QBColor(4)
col& = SBList2.BackColor

Border Property
See Also Examples

Sets or retrieves the border style

Syntax

SBList1.Border = value

value True or False.

Remarks

Specifies whether a border is drawn around the list box. If Appearance is set to 1 (3D) this property is
ignored.

See Also

Appearance Property

Examples

SBList1.Border = True
SBList2.Border = frmMain.SBList1.Border

Cell Property
See Also Examples

Returns unformatted contents of a cell. Read only, and available at run time only.

Syntax

str = SBList1.Cell (num [, index])

str String value which will contain the cell value.

num Integer specifying the cell number. The first cell is 0.

index Optional. Long integer specifying the item number. If omitted and MultiSelect=0 the current
list index is used. If omitted, and either the list index is -1 or MultiSelect > 0 then an error
will occur.

Remarks

A cell is the text between tab positions, defined as either ASCII character 9 or the \t formatting code. The
first cell is the text up to the first tab position. Up to 32 cells may be referenced.

If MultiSelect is set to 0 (simple) or 1 (extended) then the index parameter must be used.

All formatting codes are removed, including the tab characters.

See Also

TabWidth Property

Examples

Dim a$
SBList1.AddItem "England\tWales\tScotland"
SBList1.ListIndex = 0
a$ = SBList1.Cell(0, 0) ' England
a$ = SBList1.Cell(1) ' Wales
a$ = SBList1.Cell(2, 0) ' Scotland

CenterV Property
See Also Examples

Specifies whether text is vertically centered.

Syntax

SBList1.CenterV = value

value Boolean value, set to True to vertically center the text items, or False otherwise

Remarks

When this property is set to True (default) each text item and picture will be vertically centered within the
height allocated for each item. This height is either a size automatically derived from the font size, or is
the value set in ItemHeight. If CenterV is set to False, the top of the text will start at a position set by the
TextTop property, and the top of any picture will be set by PicTop.

See Also

ItemHeight Property

PicTop Property

TextTop Property

Examples

SBList1.CenterV = True
i% = SBList3.CenterV

ClipText Property
See Also Examples Knowledge Base

Truncates text at tab positions.

Syntax

SBList1.ClipText = value

value True or False.

Remarks

If this property is set to True, text will be truncated at the positions set by the TabWidth property. If the
Ellipsis property is also set to True, where text is truncated an ellipsis (…) is displayed to indicate further
text.

If ClipText is set to False and text extends beyond a tab position, the text following the tab will be
superimposed on the first.

An alternative to ClipText is the AutoClip property which will only truncate if there is text after the next
tab position.

See Also

AutoClip Property

Ellipsis Property

TabWidth Property

Examples

SBList1.ClipText = True
SBList2.ClipText = frmMain.SBList5.ClipText

DotsHorizontal Property
See Also Examples

Syntax

SBList1.DotsHorizontal = value

value True or False.

Remarks

If this property is set to True, and LineHorizontal is non-zero, the horizontal line will be dotted instead of
solid.

See Also

LineHorizontal Property

Examples

SBList1.DotsHorizontal = True
SBList2.DotsHorizontal = frmMain.SBList5. DotsHorizontal

DotsVertical Property
See Also Examples

Syntax

SBList1.DotsVertical = value

value True or False.

Remarks

If this property is set to True, then any vertical lines as specified with the LineVertical or TabLines
properties will appear dotted, and not solid.

See Also

LineVertical Property

TabLines Property

Examples

SBList1.DotsVertical = True
SBList2.DotsVertical = frmMain.SBList5.DotsVertical

DragIcon Property
See AlsoKnowledge Base

Syntax

SBList1.DragIcon = icon

icon Any code reference that returns a valid icon, such as a reference to a form's icon
(Form1.Icon), a reference to another control's DragIcon property (Text1.DragIcon), or the
LoadPicture function.

Remarks

You can use the DragIcon property to provide visual feedback during a drag-and-drop operationfor
example, to indicate that the source control is over an appropriate target. DragIcon takes effect when
the user initiates a drag-and-drop operation. Typically, you set DragIcon as part of a MouseDown or
DragOver event procedure.

See Also

DragDrop Event

DragMode Property

DragOver Event

DragMode Property
See Also

Returns or sets a value that determines whether manual or automatic drag mode is used for a drag-and-
drop operation.

Syntax

SBList1.DragMode = value

value An integer that specifies the drag mode, as described below.

Remarks

The settings for value are:

Setting Description
0 (Default) Manual-requires using the Drag method to initiate a drag-and-drop

operation on the source control.
1 Automatic-clicking the source control automatically initiates a drag-and-drop

operation. OLE container controls are automatically dragged only when
they don't have the focus.

See Also

DragDrop Event

DragIcon Property

DragOver Event

Ellipsis Property
See Also Examples Knowledge Base

Syntax

SBList1.Ellipsis = value

value True or False

Remarks

If set to True, any text that is truncated at tab stops will have an ellipsis (…) drawn to indicate that
truncation has occurred. This only applies if ClipText or AutoClip are set to True.

See Also

AutoClip Property

ClipText Property

TabWidth Property

Examples

SBList1.Ellipsis = True
SBList2.Ellipsis = frmMain.SBList5.Ellipsis

Enabled Property
Examples

Syntax

SBList1.Enabled = value

value True or False

Remarks

Specifies whether list box reacts to user intervention with the keyboard or mouse.

Examples

SBList1.Enabled = True
SBList2.Enabled = frmMain.SBList1.Enabled

EscapeChr Property
See Also Examples

Syntax

SBList1.EscapeChr = value

value Integer value between 0 and 255.

Remarks

This value is the ASCII value of the escape character used to precede a text formatting character. By
default this value is 92 which is a backslash. Setting this property to 0 will effectively turn off embedded
escape characters. To display the escape character in the list box, use 2 consecutive charcaters.

See Also

Text Formatting

Examples

SBList1.EscapeChr = 92
esc% = frmMain.SBList5.EscapeChr

FireClick Property
See Also Examples

Syntax

SBList1.FireClick = value

value True or False

Remarks

If this property is True, a Click event will be fired whenever the ListIndex or Selected properties are set
by code. The default is True.

See Also

Click Event

ListIndex Property

Selected Property

Examples

SBList1.FireClick = False
SBList2.FireClick = frmMain.SBList1.FireClick

Font Property
See Also Examples

Syntax

SBList1.Font[.attrib] = value

attrib Optional. An attribute of a Font object, such as Bold, Size, etc.

value Value for new font object or font attribute.

Remarks

Sets the font object for the list box. Attributes of this font may be changed by inserting the relevant
escape codes.

See Also

EscapeChr Property

Text Formatting

Examples

SBList1.Font.Bold = True
SBList1.Font.Size = 12
SBList1.Font.Name = “Arial”
Set SBList1.Font = frmMain.SBList2.Font

ForeColor Property
See Also Examples

Syntax

SBList1.ForeColor = value

value A color value

Remarks

This value determines the default color of the text within the list box. The color of text may be changed by
inserting escape codes.

See Also

ForeColor1 Property

ForeColor2 Property

ForeColor3 Property

ForeColor4 Property

Text Formatting

Examples

SBList1.ForeColor = RGB(255,0,0)
SBList1.ForeColor = &H80000012&
SBList1.ForeColor = QBColor(3)
col& = SBList1.ForeColor

ForeColor1, ForeColor2, ForeColor3 and ForeColor4 Properties
See Also Examples

Syntax

SBList1.ForeColorn = value

value A color value.

Remarks

These color values are used when changing the text color by using embedded escape characters. By
default, these four colors are blue, red, green and cyan respectively.

See Also

ForeColor Property

Text Formatting

Examples

SBList1.ForeColor1 = RGB(128,0,0)
SBList1.ForeColor2 = &H80000010&
SBList1.ForeColor3 = QBColor(1)
col& = SBList1.ForeColor4

Height, Width Properties
See Also Examples

Return or set the dimensions of an object.

Syntax

SBList1.Height = value
SBList1.Width = value

value A numeric expression specifying the dimensions of an object. These properties use the
scale units of the object's container.

Remarks

The values for these properties change as the object is resized. If IntegralHeight is set to True, the
height will adjust to a value that displays a whole number of list items.

See Also

IntegralHeight Property

Left Property

Top Property

Examples

SBList1.Height = 3000
SBList2.Width = 200 * Screen.TwipsPerPixelX
h% = SBList3.Height

HelpContextID Property
See Also Examples

Returns or sets an associated context number for the list box. Used to provide context-sensitive Help for
your application.

Syntax

SBList1.HelpContextID = number

number Context number, or 0 for none.

Remarks

For context-sensitive Help on the list box in your application, you must assign the same context number
to both list box and to the associated Help topic when you compile your Help file.

See Also

WhatsThisHelpID Property

Examples

SBList1.HelpContextID = 6
SBList2.HelpContextID = frmMain.SBList1.HelpContextID

HighBackColor Property
See Also Examples

Syntax

SBList1.HighBackColor = value

value A color value

Remarks

This property specifies the color used as the highlight bar for selected items. By default, it is set to the
color chosen by the user in Control Panel. The ItemBackColor property is ignored when an item is
selected.

See Also

HighForeColor Property

HighLeft Property

ItemBackColor Property

Examples

SBList1.HighBackColor = &H8000000D&
SBList1.HighBackColor = RGB(0,0,255)
col& = SBList2.HighBackColor

HighForeColor Property
See Also Examples

Syntax

SBList1.HighForeColor = value

value A color value.

Remarks

This property specifies the color used for text when selected. By default, it is set to the color chosen by
the user in Control Panel. Any color changes made by the insertion of escape codes are ignored when an
item is selected.

See Also

HighBackColor Property

Text Formatting

Examples

SBList1.HighForeColor = &H8000000E&
SBList1.HighForeColor = RGB(0,0,255)
col& = SBList2.HighForeColor

HighLeft Property
See Also Examples Knowledge Base

Syntax

SBList1.HighLeft = value

value An integer value greater than or equal to 0.

Remarks

This property set the indentation of the highlight bar for selected items, and is measured in pixels. The
default value is 0.

See Also

HighBackColor Property

HighForeColor Property

Examples

SBList1.HighLeft = 20
i% = SBList2.HighLeft

hWnd Property
Examples

Syntax

SBList1.hWnd

Remarks

Returns the window handle for the list box. Not available at design time. Read only at run time.

Examples

h% = SBList1.hWnd

Index Property

Returns or sets the number that uniquely identifies the list box in a control array. Available only if the
control is part of a control array.

Syntax

SBList1[(number)].Index

number A numeric expression that evaluates to an integer that identifies an individual list box within
a control array.

Remarks

Because control array elements share the same Name property setting, you must use the Index property
in code to specify a particular control in the array. Index must appear as an integer (or a numeric
expression evaluating to an integer) in parentheses next to the control array name - for example,
SBList(3). You can also use the Tag property setting to distinguish one control from another within a
control array.

When a control in the array recognizes that an event has occurred, Visual Basic calls the control array's
event procedure and passes the applicable Index setting as an additional argument. This property is also
used when you create controls dynamically at run time with the Load statement or remove them with the
Unload statement.

Although Visual Basic assigns, by default, the next integer available as the value of Index for a new
control in a control array, you can override this assigned value and skip integers. You can also set Index
to an integer other than 0 for the first control in the array. If you reference an Index value in code that
doesn't identify one of the controls in a control array, a Visual Basic run-time error occurs.

IntegralHeight Property
See Also Examples

Syntax

SBList1.IntegralHeight = value

value True or False.

Remarks

If this property is True, the height of the list box will be adjusted to be a size that fits whole lines only. If
set to False, it is possible to set the height to any value. The default is True.

See Also

Height Property

Examples

SBList1.IntegralHeight = True
a% = SBList2.IntegralHeight

ItemBackColor Property
See Also Exanples

Syntax

SBList1.ItemBackColor(index) = value

index List item index, between 0 and ListIndex – 1.

value Color value.

Remarks

This sets or returns the background color for a particular list item. If this property is not used on an item,
its background color will be the BackColor property. This value may be set when an item is added by
using the AddPacket method.

Not available at design time.

See Also

AddPacket Method

BackColor Property

Examples

SBList1.ItemBackColor(3) = RGB(128,128,128
SBList1.ItemBackColor(SBList1.ListIndex) = QBColor(4)
col& = SBList2.ItemBackColor(0)

ItemData Property
See Also Examples

Syntax

SBList1.ItemData(index) = value

index Index of item, between 0 and ListIndex – 1

value Long integer value

Remarks

Sets or returns a long integer value that may be attached to a list item. This value is not used for any
purpose other than a place to store user data associated with an item. Similarly, a string value may be
associated with a list item by using ItemText. The ItemData value may be set when an item is added to
the list by using the AddPacket method.

Not available at design time.

See Also

AddPacket Method

FindData Method

ItemText Property

Examples

SBList1.ItemData(56) = 1996
a& = SBList1.ItemData(100)
SBList2.ItemData(SBList1.NewIndex) = -100

ItemHeight Property
See Also Examples

Syntax

SBList1.ItemHeight = value

value Height in pixels of every list item, or 0 to use default value.

Remarks

Sets or returns the height in pixels of every list item. If set to 0 the size will be calculated based on the
font size. The text can be positioned within its space by use of CenterV, TextTop and TextLeft
properties.

If IntegralHeight is set to True and ItemHeight is greater than 0, the list box height will adjust to fit a
whole number of list items.,

Unlike in earlier version, this property may be set at run time.

See Also

CenterV Property

TextLeft Property

TextTop Property

Examples

SBList1.ItemHeight = 30
i% = SBList2.ItemHeight

ItemPicture Property
See AlsoExamples Knowledge Base

Supplies an item with a picture.

Syntax

Set SBList1.ItemPicture(index) = picture

index Numeric value between 0 and ListIndex – 1.

picture A picture

Remarks

This property sets the picture to be displayed for a list item. The picture is displayed at the position within
the list item as set by the PicLeft and PicTop properties.

Not available at design time and write only at run time.

See Also

AddPicture Method

AddPacket Method

PicLeft Property

PicTop Property

Examples

Set SBList1.ItemPicture(12) = Picture2.Picture
Set SBLIst1,ItemPicture(1) = LoadPicture(“c:\mypic.bmp”)
Set SBList1.ItemPicture(2) = LoadPicture()

Knowledge Base

How to create a list of check boxes

Problems with pictures ?

ItemText Property
See Also Examples

Syntax

SBList1.ItemText(index) = value

index Numerical value between 0 and ListIndex – 1.

value A string value

Remarks

This property allows a string value to be attached to any list item, similar to the ItemData property. The
value is not displayed.

Not available at design time.

See Also

AddPacket Method

FindString Method

ItemData Property

Examples

SBList1.ItemText(56) = “Hello World”
a$ = SBList1.ItemText(100)

Knowledge Base

How to Clip, Wrap, Tab and Truncate

Knowledge Base

How to create a list of check boxes

Knowledge Base

How to drag and drop items between two lists

How to drag and drop multiple list items

How to reposition list items using drag and drop

Left, Top Properties
See Also Examples

· Left - returns or sets the distance between the internal left edge of an object and the left edge of its
container.

· Top - returns or sets the distance between the internal top edge of an object and the top edge of its
container.

Syntax

SBList1.Left = value
SBList1.Top = value

value A numeric expression specifying distance.

Remarks

The Left and Top properties are measured in units whose size depends on the coordinate system of the
object's container. The values for these properties change as the object is moved by the user or by code.

See Also

Height Property

Width Property

Examples

SBList1.Left = 300
SBList1.Top = 180

LineColor Property
See Also Examples

Syntax

SBList1.LineColor = value

value A color value

Remarks

Sets or retrieves the color value used to draw any horizontal or vertical lines as set by the
LineHorizontal, LineVertical and TabLines properties

See Also

LineHorizontal Property

LineVertical Property

TabLines Property

Examples

SBList1.LineColor = RGB(255,0,0)
SBList1.LineColor = &H000000FF&
col& = SBList2.LineColor

LineHorizontal Property
See Also Examples

Sets or retrieves the position of a horizontal line drawn across each list item.

Syntax

SBList1.LineHorizontal = number

number Numeric value

Remarks

Gets or retrieves the vertical position of a horizontal line, drawn the width of the list box within each list
item. The color of the line is specified with the LineColor property. The line will either be drawn solid or
as a series of dots, as specified with the DotsHorizontal property.

The values that can be assigned to number are :

Constant Value Description
sbNone 0 No line is drawn
sbLineBelow -2 Line is drawn across the bottom
sbLineAbove -1 Line is drawn across the top

> 0 The vertical position in pixels, starting from the top

See Also

DotsHorizontal Property

LineColor Property

LineVertical Property

Examples

SBList1.LineHorizontal = -2
SBList2.LineHorizontal = 5
i% = SBList3.LineHorizontal

LineVertical Property
See Also Examples

Sets or retrieves the horizontal position of vertical lines drawn within each list item.

Syntax

SBList1.LineVertical(index) = number

index Numeric value between 0 and 31 specifying which line is being set.

number Numeric value. –1 indicates no line.

Remarks

This property allows up to 32 vertical lines to be drawn within a list item. The numeric value in number
contains the position in pixels from the left edge where the line will be drawn, or –1 for no line. The color
of the line is set with the LineColor property. The DotsVertical property controls whether the lines are
drawn solid or as a series of dots. If TabDots is set to True the values stored in LineVertical are ignored.

Not available at design time.

See Also

DotsVertical Property

LineColor Property

LineHorizontal Property

TabLines Property

Examples

SBList1.LineVertical(0) = 30
SBList1.LineVertical(1) = 90
i% = frmMain.SBList3.LineVertical(3)

List Property
See Also Examples

Sets or retrieves a list item.

Syntax

SBList1.List(index) = value

index Numeric value between 0 and ListIndex – 1.

value A string expression.

Remarks

This property is used to either retrieve the text for a list item, or replace the text with a different value. Not
available at design time.

See Also

Text Property

Examples

SBList1.List(1) = “Mongolia, Ulaanbaatar”
x$ = SBList1.List(84)

ListCount Property
Examples

Returns the number of items in the list box

Syntax

SBList1.ListCount

Remarks

Returns the number of items in the list box. Not available at design time.

Examples

i% = SBList1.ListCount

ListIndex Property
Examples

Syntax

SBList1.ListIndex = number

number Numeric value.

Remarks

This property sets or retrieves the currently selected item, or –1 if no item is selected. If MultiSelect is
set to 1, 2 or 3 then ListIndex returns the position of the list item containing the focus rectangle.

Examples

SBList1.ListIndex = -1
SBList1.ListIndex = 8
i% = SBList2.ListIndex

ListRaw Property
See AlsoExamples

Syntax

SBList1.ListRaw(index)

index Numeric value between 0 and ListCount – 1

Remarks

Returns the contents of a list item with all text formatting codes removed. Not available at design time
and read-only at run time.

See Also

List Property

Text Formatting

Examples

SBList1.Clear
SBList1.AddItem “[BVietnam[b\t\IHanoi\i”
a$ = SBList1.ListRaw(1) ‘ a$ = “VietnamHanoi”

MouseIcon Property
See Also Examples

Sets a custom mouse icon.

Syntax

SBList1.MouseIcon = picture

picture A picture, or LoadPicture statement.

Remarks

The MouseIcon property provides a custom icon that is used when the MousePointer property is set to
99.

See Also

DragIcon Property

MouseMove Event

MousePointer Property

Examples

SBList1.MouseIcon = Picture1.Picture
SBList1.MouseIcon = LoadPicture(“c:\hand.cur”)
SBList2.MouseIcon = frmMain.SBList1.MouseIcon

MousePointer Property
See Also Examples

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is over the list
box.

Syntax

SBList1.MousePointer = number

number An integer specifying the type of mouse pointer displayed.

Remarks

A number of 99 will use the cursor stored in MouseIcon to be used.

See Also

DragIcon Property

MouseIcon Property

MouseMove Event

Examples

SBList1.MousePointer = 11 ‘ Hourglass
SBList2.MousePointer = 99 ‘ MouseIcon
i% = SBList3.MousePointer

MultiSelect Property
See Also Examples Knowledge Base

Returns or sets a value indicating whether a user can make multiple selections and how the multiple
selections can be made.

Syntax

SBList1.MultiSelect = number

number An integer between 0 and 3.

Remarks

The MultiSelect property settings are:

Constant Value Description
sbNone 0 (Default) Multiple selection isn't allowed.
sbSimple 1 Simple multiple selection. A mouse click or pressing the

SPACEBAR selects or deselects an item in the list. (Arrow
keys move the focus.)

sbExtended 2 Extended multiple selection. Pressing SHIFT and clicking the
mouse or pressing SHIFT and one of the arrow keys (UP
ARROW, DOWN ARROW, LEFT ARROW, and RIGHT
ARROW) extends the selection from the previously selected
item to the current item. Pressing CTRL and clicking the
mouse selects or deselects an item in the list.

sbSpecial 3 Special multiple selection. Similar to 2-Extended but it is not
possible to select items by dragging a selection. This is useful
for multiple item drag & drop.

See Also

SelCount Property

SelectAll Method

Selected Property

SelectNone Method

Examples

SBList1.MultiSelect = 3
i% = frmMain.SBList2.MultiSelect

Knowledge Base

How to drag and drop multiple list items

Name Property
See Also

Returns the name used in code to identify the list box.

Syntax

SBList1.Name

Remarks

The default name for new list boxes is SBList plus a unique integer. For example, the first new list box is
SBList1.

Read-only at run-time.

See Also

Index Property

NewIndex Property
See Also Examples

Returns index of last item added to list box.

Syntax

SBList1.NewIndex

Remarks

This returns the index number of the last item added. If an item has been removed, NewIndex returns –
1.

Not available at design time, and read-only at run time.

See Also

AddItem Method

AddPacket Method

AddPicture Method

Examples

SBList.Sorted = True
SBList1.AddItem “Morocco”
i% = SBList1.NewIndex

PicLeft Property
See Also Examples Knowledge Base

Sets or returns the indentation of each items picture.

Syntax

SBList1.PicLeft = number

number Integer value, specifying number of pixels.

Remarks

This property is used to specify the number of pixels between the left border of the list box and the left
edge of an items picture.

See Also

AddPicture Method

ItemPicture Property

PicTop Property

Examples

SBList1.PicLeft = 30
i% = frmMain.SBList2.PicLeft

PicTop Property
See AlsoExamples Knowledge Base

Sets or returns the vertical position of each items picture.

Syntax

SBList1.PicTop = number

number Integer value, specifying number of pixels.

Remarks

This property is used to specify the number of pixels between the top of an items space and the top edge
of an items picture. Ignored if CenterV is set to True.

See Also

AddPicture Method

CenterV Property

ItemPicture Property

PicLeft Property

Examples

SBList1.PicTop = 5
i% = frmMain.SBList2.PicTop

RightButton Property
Knowledge Base

Boolean value specifying whether list box reacts to the right mouse button.

Syntax

SBList1.RightButton = value

value True or False.

Remarks

If set to True, the list box will react to right mouse clicks in the same way as for the left mouse button.
The default setting is False.

Knowledge Base

How to use the RightButton property

SelCount Property
See Also Examples

Syntax

SBList1.SelCount

Remarks

Returns the number of items currently selected in the list box. Not available at design time, and read-only
at run time.

See Also

MultiSelect Property

Selected Property

Examples

i% = SBList1.SelCount

Selected Property
See AlsoExamples

Sets or returns the selected status of an item.

Syntax

SBList1.Selected(index) = value

index Integer value between 0 and ListCount – 1.

value True or False.

Remarks

Sets or returns the selected status of an item. If MultiSelect = 0 then this property affects the ListIndex
property. Not available at design time.

See Also

ListIndex Property

MultiSelect Property

SelCount Property

Examples

SBList1.Selected(5) = True
i% = SBList2.Selected(10)

ShowFocus Property
See Also Examples

Syntax

SBList1.ShowFocus = value

value True or False

Remarks

Gets or sets whether a focus rectangle is displayed whenever the list box has the focus. The default is
True, which matches the behaviour of a standard list box

See Also

GotFocus Event

LostFocus Event

SetFocus Method

Examples

SBList1.ShowFocus = False
i% = SBList3.ShowFocus

Sorted Property
See Also Examples Knowledge Base

Syntax

SBList1.Sorted = value

value True or False.

Remarks

Gets or sets a Boolean value determining whether items added to the list box are sorted or not. The
SortedOn property specifies on what attribute the sorting is performed on. Any escape characters are
ignored for the purposes of sorting.

Unlike a standard list box, the Sorted property may be changed at run time. However, changing the
value will not cause a change to the order of any items already in the list box.

See Also

AddItem Method

AddPacket Method

SortedOn Property

Examples

SBList1.Sorted = True
i% = SBList2.Sorted

SortedOn Property
See Also Examples Knowledge Base

Syntax

SBList1.SortedOn = value

value Integer value between 0 and 2.

Remarks

Determines on what attribute an item is to be sorted on when adding a new item to a list box. If Sorted =
False this property is ignored. With value set to 1 or 2, adding items must be performed using the
AddPacket method in order to achieve correct placement of items.

Settings for value are :

0 Sort on Iist text, the actual text seen in the list box. This is default.

1 Sort on item data. Items must be added using AddPacket for this to work.

2 Sort on item text. Items must be added using AddPacket for this to work.

See Also

AddItem Method

AddPacket Method

Sorted Property

Examples

SBList1.SortedOn = 2
i% = SBList2.SortedOn

TabDots Property
See Also Examples

Syntax

SBList1.TabDots = value

value True or False.

Remarks

Gets or specifies if dots are to be drawn between columns of text, as specified by the TabWidth property.
This only has effect when the ClipText property is true.

See Also

ClipText Property

TabWidth Property

Examples

SBList1.TabDots = True
i% = SBList1.TabDots

TabIndex Property
See Also

Returns or sets the tab order of the list box within its parent form.

Syntax

SBList1.TabIndex = value

value An integer from 0 to (n1), where n is the number of controls on the form that have a
TabIndex property

See Also

TabStop Property

TabLines Property
See Also Examples

Syntax

SBList1.TabLines = value

value True or False

Remarks

If value is set to True then vertical lines will be drawn at tab positions specified
with the TabWidth property, and any values stored using LineVertical are ignored.

See Also

DotsVertical Property

LineColor Property

TabWidth Property

Examples

SBList1.TabLines = True
i% = SBList1.TabLines

TabStop Property
See Also

Returns or sets a value indicating whether a user can use the TAB key to give the focus to the list box.

Syntax

SBList1.TabStop = value

value True or False

See Also

TabIndex Property

TabWidth Property
See Also Examples Knowledge Base

Sets or returns the tab positions.

Syntax

SBList1.TabWidth(index) = value

index Integer between 0 and 31.

value Integer.

Remarks

Sets or returns the position in pixels for a particular tab stop. The first tab character (or \t) will start
printing from TabWidth(0), the 2nd from TabWidth(1) etc. It is therefore possible to have tab positions
out of order. When displaying multiple line items, the tab positioning does not go back to 0 for each new
line, making it possible to have different tab positions for each line.

Vertical lines can be drawn at tab positions by setting TabLines to True. Text can be clipped at tab
positions by use of AutoClip or ClipText properties.

Not available at design time.

See Also

AutoClip Property

ClipText Property

TabLines Property

Examples

SBList1.TabWidth(0) = 50
SBList1.TabWidth(1) = 130
SBList1.TabWidth(2) = 80
i% = SBList2.TabWidth(2)

Tag Property
Examples

Returns or sets an expression that stores any extra data needed for your program. Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can use this property to identify
objects.

Syntax

SBList1.Tag = value

value String expression.

Examples

SBList1.Tag = “Listbox 3”
a$ = frmMain.SBList2.Tag

Text Property
See Also Examples

Syntax

SBList1.Text

Remarks

Returns the contents of the currently selected item. If no item is selected, an empty string is returned.

Not available at design time, and read-only at run time.

See Also

List Property

ListIndex Property

Examples

a$ = SBList1.Text

TextLeft Property
See Also Examples Knowledge Base

Sets or returns the indentation of list text.

Syntax

SBList1.TextLeft = value

value Integer value

Remarks

Sets or returns the number of pixels between the left border of the list box and the start of the text. If set
to –1 (default) the text will be 2 pixels from the left border, or if a picture is present the text will start 2
pixels to the right of it.

See Also

CenterV Property

TextTop Property

Examples

SBList1.TextLeft = 10
SBList2.TextLeft = -1
i% = frmMain.SBList1.TextLeft

TextTop Property
See Also Examples

Syntax

SBList1.TextTop = value

value Integer value.

Remarks

Gets or sets the number of pixels from the top of an items space to the top of the text within it. If CenterV
is set to True, this property is ignored.

See Also

CenterV Property

TextLeft Property

Examples

SBList1.TextTop = 5
i% = SBList1.TextTop

TopIndex Property
Examples

Syntax

SBList1.TopIndex = value

value Integer value

Remarks

Gets or returns the item index number of the top most visible item in the list box. Not available at design
time.

Examples

SBList1.TopIndex = 23
b& = SBList1.TopIndex

Visible Property
Examples

Syntax

SBList1.Visible = value

value True or False.

Remarks

Sets or returns the visible state of the list box.

Examples

SBList1.Visible = True
i% = SBList1.Visible

WhatsThisHelpID Property
See Also Examples

Syntax

SBList1.WhatsThisHelpID = value

value Numeric value

Remarks

Returns or sets an associated context number for an object. Used to provide context-sensitive Help for
your application using the What's This popup in Windows 95 Help.

See Also

HelpContextID Property

Examples

SBList1.WhatsThisHelpID = 101
I% = SBList2.WhatsThisHelpID

Knowledge Base

How to use the Sorted property

How to use the SortedOn property

Knowledge Base

Problems with pictures ?

 SBList OLE Control (ActiveX) Version 2.0
Shareware version

Properties Methods Events Formatting Knowledge Base

SBList OCX is a 32-bit high performance enhanced list box, incorporating most of the features of the
standard Windows list box but with many extra features :

· Add a bitmap to any list item, in any position
· Change font attributes within an item
· Change color within an item
· Click event fires with right mouse button
· Can display horizontal & vertical lines
· Multiple lines per list item
· Powerful tab positioning
· Set background color for individual items
· Set highlight colors
· Assign a string to each item as well as standard long data type
· Sort items on text, ItemData or ItemText
· Load and save contents to disk
· Comprehensive search facilities

Purchase information
Legal
Release notes
Support
Credits

Purchase Information

To be able to distribute SBList OCX with your applications, or to use it commercially, or if you just want to
continue to use SBList with a clean conscience, you must first register. Remember, this is just an
evaluation copy only. Once registered you will receive the registered version which may be distributed by
you in your applications, with no restrictions on the volume sold. The registered version will not display a
message box when used with a compiled VB program.

By registering you will also receive all future upgrades of this product (if you select e-mail as your delivery
method). Full lifetime support is also included.

There are two options for registering SBList OCX :

Option 1
Purchase one licence for each of your developers that will be using SBList OCX for application
development. The cost of each licence is either 25 GB pounds, 40 US dollars or 55 Canadian dollars.
Other currencies are also accepted, but please contact us for up-to-date information.

Option 2
Purchase a corporate licence. This entitles you to unlimited licences for all your company's application
developers and the full source code to SBList OCX (compiles with Visual C++ 4.0). The cost is 100 GB
pounds, 160 US dollars or 220 Canadian dollars. Other currencies are also accepted, but please contact
us for up-to-date information.

The methods available to pay are:

Check. Personal and company checks are accepted, and should be made payable to 'Global
Components'. The currency used on the check must match the country of the bank printed on it. For
example, do not send a Canadian check made out in US dollars, not unless it has a US bank address
printed on the front. Euro-cheques are accepted but these must be in your own currency.

Cash. When sending cash through the post you do so at your own risk. Please ensure it is not visible
from outside of the envelope.

Bank transfer. Please contact us for bank details.

Credit card. These are not currently accepted, but we are in the process of obtaining the facilities to
accept Visa, Mastercard and Eurocard. By the time you are reading this we may be able to accept them,
so please contact us to verify.

With your registration, please supply :

1. Your name & company name (if applicable)
2. Your postal address.
3. Your e-mail address (if applicable)
4. The product name : SBList OCX.
5. The purchase option, either 1or 2. If option 1, then specify the number of licences.
6. How you would like to receive the registered files, either e-mail or post.

Please send to :

Global Components
41 Milton Street
Northampton
NN2 7JG

United Kingdom

If you have any queries/comments/bug-reports you can e-mail us at :
GlobalCom@pobox.com

Visit our web site at :
http://ds.dial.pipex.com/globalcom/

